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Abstract

The missing outcome problem is a pervasive problem in economics that arises in many

situations and hinders the researcher’s ability to recover the population moments. The

literature primarily focuses on the identifying power of shape restrictions which can

be invoked in empirical studies in order to identify the statistics of interest. In this

paper, we propose a novel approach of partial identification that does not rely on shape

restrictions but instead explores the variation of the covariates in the sample. We illus-

trate our approach using the Index of Consumer Sentiment where the missing outcome

problem resulted from the substitution of landlines with cellphones in telephone sur-

veys. We construct sharp bounds on the Index of Consumer Sentiment and provide

conditions under which the bounds are informative. We then extend our approach to

the treatment effects literature by constructing bounds on the average treatment effect.
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1 Introduction

Missing outcomes is a pervasive problem that arises in many situations hindering our capac-

ity to recover population moments. The problem the researcher faces consists of learning the

conditional or unconditional mean functions, or the distribution of an outcome of interest

when its realizations are observed selectively Manski (1989, 2005). For example, missing

outcomes appear as a result of survey nonresponse, attrition in longitudinal studies, or when

population members do not appear in the sample frame. The latter problem is known in

survey research as coverage bias, and it arises, for example, from the exclusion of cellphone-

only population in standard landline telephone surveys. Hence, in order to point identify

the population statistics of interest the researcher has to impose assumptions on the dis-

tribution of the missing outcomes. The literature has focused on the identifying power of

shape restrictions assumptions combined with the sampling process which can be invoked

in empirical studies (Manski 1995, 1997b; Manski and Pepper 2000; Manski 2003, 2009).

Different from the current literature, we propose a novel form of partial identification that

exploits variation in the data in order to construct sharp and informative bounds and we

illustrate our approach using the University of Michigan Index of Consumer Sentiment. We

also extend this approach to the treatment effects literature by constructing bounds on the

average treatment effect and average treatment medium effect.

To motivate our paper and explain our main contribution, we formally present the

structure of the problem as follows Manski (1989, 2009). Let J be our population of interest

and let each member of the population be characterized by the vector pY,X,W,Zq P YˆXˆ

WˆZ, where Y denotes the outcome variable of interest, pX,W q are vectors that measure the

characteristics of a population member, and Z is a binary variable indicating the observability

of the outcome (Z “ 1 observable). The goal is to infer the population expectation ErY s.

Using the law of iterated expectations, one can decompose the unconditional mean function
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as follows:1

ErY s “ ErY |Z “ 1sPrpZ “ 1q ` ErY |Z “ 0sPrpZ “ 0q. (1)

Suppose that the outcome Y is bounded in its support Y by a minimum value y and

maximum value y which are both known. That is, y “ min
␣

Y
(

and y “ max
␣

Y
(

, and

this implies that both the unconditional and conditional population expectations will also

be bounded. In most applications, the outcome Y will naturally bounded by definition. The

sampling process reveals ErY |Z “ 1s as we observe the conditional distribution FY |Z“1 but it

says nothing about the probability distribution of the missing data PrpZq and the conditional

mean function ErY |Z “ 0s. Depending on the context, the probability distribution PrpZq

might or might not be known.2 On the contrary, ErY |Z “ 0s is unknown and may take

any value in the known interval ry, ys. As a result, the identification region for ErY s, which

considers all the possible values that the missing data can take, is as follows:

H
␣

ErY s
(

“
␣

ErY |Z “ 1sPrpZ “ 1q ` yPrpZ “ 0q, ErY |Z “ 1sPrpZ “ 1q ` yPrpZ “ 0q
(

. (2)

The bandwidth of the identification region is B “ py´yqPrpZ “ 0q, a proper subset of ry, ys

when PrpZ “ 0q ą 0. The bandwidth is a function of two components: (i) the range of Y ,

py ´ yq, which can also be seen as the interval corresponding to the identification region of

the unobserved ErY |Z “ 0s; and (ii) the probability of the missing outcome, PrpZ “ 0q. The

bandwidth is a singleton if ErY |Z “ 1s “ ErY |Z “ 0s, that is, when Y is mean independent

of Z (i.e., missing at random), or trivially when PrpZ “ 0q “ 0.3

1The anatomy of the problem described in Manski (1989) considers the conditional expectation ErY |Xs

because his focus is on prediction.
2For instance, if missing outcomes appear from attrition, this probability is known. On the contrary, if

missing outcomes arise from the undercoverage of population in the sampling process, this probability is not
directly revealed because the information is not contained in the sampling framework. It is worth noting that
in the latter case not only the outcome is missing but also the covariates. Horowitz and Manski (2000) have
studied randomized experiments with missing outcome and covariates and derived bounds on the population
moments without imposing untestable assumptions.

3Throughout this paper the calligraphic letter Ht¨u is reserved for identification regions, that is, sets that
collect the feasible values of the quantity in the brackets. We say that point identification of the quantity in
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In this paper we show how variation in covariates can be exploited in order to tighten

the bandwidth B of the identification region (2) and thus improve the overall identifica-

tion region H
␣

ErY s
(

. In particular, we show how to improve the identification region of

ErY |Z “ 0s such that H
␣

ErY |Z “ 0s
(

Ă ry, ys. Intuitively, our approach exploits the

distinct bounds that an outcome can take across different strata or subpopulations. We il-

lustrate our approach considering the coverage bias created from the substitution of landlines

with cellphones in telephone surveys in the 2000s and 2010s and the University of Michigan

Index of Consumer Sentiment (ICS). The ICS is constructed using consumers’ responses

from a monthly nationally representative telephone survey of 500 adults since 1978. Prior to

July 2012, the sample of adults was selected using a landline random-digital dialing (RDD)

sampling and between July 2012 and July 2015 from a dual-frame landline-cellular telephone

design. After July 2015 the survey switched to a RDD cellular-only design. To motivate

our problem we initially construct the identification region for the ICS, and show that the

width of the region of ICS increased almost eight-fold between 2003 and 2012. Our results

show that, depending on the covariate employed, the overall identification region for the ICS

decreases up to a 32.3% relative to a region spanned by an observed bound and up to 71.2%

relative to a theoretical bound.

The literature on partial identification has primarily focused on providing informative

bounds on average treatment effects by exploring different shape restriction assumptions

(Manski 1989, 1990, 1997b; Manski and Pepper 2000). Partial identification by imposing

shape restrictions has been applied in different areas such as health economics ( e.g. Gerfin

and Schellhorn (2006); Kreider et al. (2012); Cygan-Rehm, Kuehnle and Oberfichtner (2017))

and labor economics (e.g. Pepper (2000); Gonzalez (2005); Lee and Wilke (2009); De Haan

(2011)). The closest studies that are related to our study are Horowitz and Manski (1998,

the brackets is achieved if the identification region is a singleton and we have partial identification when the
identification region contains many elements but it is smaller than all feasible values. We reserve Roman and
Blackboard letters for random variables and their supports, respectively. For example, X denotes a random
variable with support in space X.

3



2000) where under different types of survey nonresponses (outcome censoring, joint censoring,

regressor censoring, and a mixture of the previous cases) they construct informative bounds

on unidentified population parameters but their focus is on bounding the asymptotic bias

of estimates using imputations and weights and analyze the problems of inference where the

outcome of interest varies with treatment and covariates.

The remainder of the paper is organized as follows. Section 2 develops the identification

framework with additional covariates and contains our main contribution. Section 3 intro-

duces the undercoverage bias problem and the ICS coverage bias in telephone surveys and

illustrates our approach. In Section 4 we construct bounds on the conditional mean function

and in Section 5 we conclude.

2 Partial Identification with Additional Covariates

The conditional mean ErY |Z “ 0s in equation (1) is unknown and may take any value in

the interval ry, ys. Thus without any further assumption, H
␣

ErY |Z “ 0s
(

“ ry, ys, and

its bandwidth is B0 “ y ´ y. Considering this, the bandwidth of the identification region

of ErY s, which is B “ py ´ yqPrpZ “ 0q, can be rewritten as B “ B0 PrpZ “ 0q. The

latter expression makes it clear how improvements in the bandwidth B0 translates to B and

ultimately to the overall identification region of ErY s. To illustrate the idea, let W denote a

binary covariate such that PrpW “ 1|Z “ 0q P p0, 1q. Using the law of total probability we

can decompose ErY |Z “ 0s as follows,

ErY |Z “ 0s “ ErY |Z “ 0,W “ 1sPrpW “ 1|Z “ 0q ` ErY |Z “ 0,W “ 0sPrpW “ 0|Z “ 0q (3)

Let yi “ ErY |Z “ 0,W “ is, yi “ min
␣

ErY |Z “ 0,W “ is
(

, and yi “ max
␣

ErY |Z “

0,W “ is
(

for i P t0, 1u. Using equation (3), the identification region for the conditional
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expectation ErY |Z “ 0s is:

H
␣

ErY |Z “ 0su “
␣

y1 PrpW “ 1|Z “ 0q ` y0 PrpW “ 0|Z “ 0q,

y1 PrpW “ 1|Z “ 0q ` y0 PrpW “ 0|Z “ 0q
(

,

(4)

and its corresponding bandwidth is:

B1 “ py1 ´ y1qPrpW “ 1|Z “ 0q ` py0 ´ y0qr1 ´ PrpW “ 1|Z “ 0qs. (5)

By adding and subtracting py ´ yq, this bandwidth can be rewritten as follows:

B1 “ py ´ yq ` rpy1 ´ y1q ´ py ´ yqsPrpW “ 1|Z “ 0q

` rpy0 ´ y0q ´ py ´ yqsr1 ´ PrpW “ 1|Z “ 0qs.

(6)

Assumption 1. Range of yi is not a singleton. y ď yi ă yi ď y for i P t0, 1u, where y and

y correspond to the lower and upper bounds of Y , respectively.

Proposition 1. If at least one of the weak inequalities in assumption 1 holds with strict

inequality for any i P t0, 1u, then B1 ă B0.

Proof. wlog let y ă y1 ă y1 “ y and y “ y0 ă y0 “ y. Hence, using equation (6),

B1 “ py ´ yq ´ py1 ´ yqPrpW “ 1|Z “ 0q

ă py ´ yq “ B0

Similarly, let y “ y1 ă y1 ă y and y “ y0 ă y0 “ y. Hence,

B1 “ py ´ yq ´ py ´ y1qPrpW “ 1|Z “ 0q

ă py ´ yq “ B0

Assumption 1 rules out the case where Y is a constant. Proposition 1 shows that if the
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range of Y conditional on W is contained within the range of Y , that is, ryi, yis Ă ry, ys,

then it is possible to tighten the bandwidth of ErY |Z “ 0s, from B0 “ ry ´ ys to B1.

As a result, the bandwidth of the identification region of ErY s in equation (2) becomes

B “ B1 PrpZ “ 0q ă B0 PrpZ “ 0q. Intuitively, proposition 1 exploits the distinct bounds

that the outcome can take across different strata or subpopulations. It is worth noting that

this proposition shows that it is possible to tighten the bandwidth B0, but it does not show

how it is identified in the data. We show this in the next section.

2.1 Identification of Bandwidth

Proposition 1 shows how to improve the bandwidth B0 using covariate W . The condition

is based on the bounds of the conditional expectations ErY |Z “ 0,W “ is, which are

not directly revealed by the data. In this section, we show how to recover these conditional

means. We start our analysis using the strong assumption of conditional independence which

is specified as follows:

Assumption 2. Conditional independence. ErY |Z “ 0,W s “ ErY |Z “ 1,W s

Proposition 2. If assumption 2 holds, ErY s is point-identified (Manski (1989)).

Proof. Under assumption 2 and applying the law of iterated expectations,

ErY |Z “ 0s “
ÿ

iPt0,1u

ErY |Z “ 0,W “ isPrpW “ i|Z “ 0q

“
ÿ

iPt0,1u

ErY |Z “ 1,W “ isPrpW “ i|Z “ 0q

Conditional mean independence point-identifies the expectation of interest ErY s by

itself. Under this assumption, there is no need to further recover the bandwidth B1. However,

this is a strong assumption that cannot be justified in many settings. We propose a novel

6



approach to identify this bandwidth and introduce it by considering the missing outcome

problem that arises from coverage bias in telephone surveys. Nonetheless, the approach can

be readily applied to other missing outcome problems as well.

Many telephone surveys use random-digital dialing (RDD) to select a sample of indi-

viduals via random selection of their telephone numbers.4 In the early 2000s, standard RDD

survey practices in the U.S. tended to exclude cellphones from their sampling frames (Ehlen

and Ehlen (2007)). This exclusion created a type of missing outcome problem, which is

known as coverage bias because a subset of the population is not surveyed. This undercov-

erage was of little concern in the early 2000s, and most importantly, it was not present prior

to the cellphone era.5

Formally, let T be a binary variable indicating the occurrence of the undercoverage

(missing outcome). In our example, T “ 1 corresponds to the cellphone era, when the

exclusion of cellphone-only population resulted in undercoverage. Accordingly, we rewrite

the problem in equation (1) as follows:

ErY |T “ 1s “ ErY |Z “ 1, T “ 1sPrpZ “ 1|T “ 1q ` ErY |Z “ 0, T “ 1sPrpZ “ 0|T “ 1q (7)

and its corresponding identification region as

H
␣

ErY |T “ 1s
(

“
␣

ErY |Z “ 1, T “ 1sPrpZ “ 1|T “ 1q ` y
t1
PrpZ “ 0|T “ 1q,

ErY |Z “ 1, T “ 1sPrpZ “ 1|T “ 1q ` yt1 PrpZ “ 0|T “ 1q
(

(8)

Where y
t1

“ min
␣

ErY |Z “ 0, T “ 1s
(

and yt1 “ max
␣

ErY |Z “ 0, T “ 1s
(

. The

corresponding bandwidth is Bt1 “ pyt1 ´ y
t1

qPrpZ “ 0q. That is, it depends on the range of

Y at T “ 1. As before, we introduce the covariate W and let yi
t1

“ min
␣

ErY |Z “ 0, T “

1,W “ is
(

and yit1 “ max
␣

ErY |Z “ 0, T “ 1,W “ is
(

for i P t0, 1u. In this case, the

4Random-digit dialing (RDD) is a probability sampling method that provides a sample of units by ran-
domly selecting their telephone numbers. Wolter, Chowdhury and Kelly (2009) provide a discussion of RDD
surveys in U.S.

5In 2003, the percentage of landline-only adults was 40.4%, while for cellphone-only and phoneless adults
the percentages were 2.8% and 1.6%, respectively.
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identification region of ErY |Z “ 0, T “ 1s is

H
␣

ErY |Z “ 0, T “ 1su “
␣

y1
t1
PrpW “ 1|Z “ 0, T “ 1q ` y0

t1
PrpW “ 0|Z “ 0, T “ 1q,

y1t1 PrpW “ 1|Z “ 0, T “ 1q ` y0t1 PrpW “ 0|Z “ 0, T “ 1q
(

(9)

and its bandwidth is

B1 “ py ´ yq ` rpy1t1 ´ y1
t1

q ´ py ´ yqsPrpW “ 1|Z “ 0, T “ 1q

` rpy0t1 ´ y0
t1

q ´ py ´ yqsr1 ´ PrpW “ 1|Z “ 0, T “ 1qs

(10)

Assumption 3. Range extrapolation. For each i P t0, 1u, let

(i) yi
t1

“ min
␣

ErY |Z “ 0,W “ i, T “ 1s
(

“ min
␣

ErY |W “ i, T “ 0s
(

“ yi
t0

and

(ii) yit1 “ max
␣

ErY |Z “ 0,W “ i, T “ 1s
(

“ max
␣

ErY |W “ i, T “ 0s
(

“ yit0

Proposition 3. If assumption 3 holds, the bandwidth B1 is identified. If in addition the

assumption 1 is satisfied, the overall identification region of ErY s improves and is identified.

Proof. Under assumption 3 the bandwidth B1 is

B “ B1 PrpZ “ 0q

“
“

py1t1 ´ y1
t1

qPrpW “ 1|Z “ 0q ` py0t1 ´ y0
t1

qPrpW “ 0|Z “ 0q
‰

PrpZ “ 0q

“
“

py1t0 ´ y1
t0

qPrpW “ 1|Z “ 0q ` py0t0 ´ y0
t0

qPrpW “ 0|Z “ 0q
‰

PrpZ “ 0q

where all quantities in the last equality are known.

Assumption 3 says that the range of Y is time invariant and thus it is possible to replace the

unobserved range of ErY |Z “ 0,W, T “ 1s with the observed range of ErY |W,T “ 0s. The

latter conditional expectation is not censored by the undercoverage because it corresponds to

the time period when the cellphone coverage bias did not exist, in our example. Is this a more

sensible assumption than conditional independence? This assumption is more reasonable

and in many cases the bounds of the variables of interest are restricted by definition and in

advance of any realizations.
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2.1.1 Example: Binary Response

Consider the case when then variable of interest Y is binary, thus ErY s “ PrpY “ 1q and

y “ 0 and y “ 1. In this case, the empirical evidence shows that the bandwidth of the

identification region of PrpY “ 1q is

B “ B1 PrpZ “ 0q “ PrpZ “ 0q (11)

Where B1 “ p1´0q is the bandwidth of the identification region HtPrpY “ 1|Z “ 0qu. That

is, B equals the probability of missing outcomes. When introducing the additional covariate

W , B can be rewritten as

B “ B1 PrpZ “ 0q

“
“

py1 ´ y1qPrpW “ 1|Z “ 0q ` py0 ´ y0qPrpW “ 0|Z “ 0q
‰

PrpZ “ 0q

(12)

2.2 Multiple Categorical Covariates

The previous results can be extended to the case of multiple categorical covariates. Consider

the set of categorical variables X “ tX1, ..., XLu and let the elements of its Cartesian

product, X ” ˆ
lPL

Xl, be indexed by i P W “ t1, . . . , |X |u where |X | is the cardinality of

set X and L “ t1, . . . , Lu. Define the covariate W as a categorical variable over the elements

in the set X . Using the law of total expectations, we can write ErY |Z “ 0s as follows

ErY |Z “ 0s “
ÿ

iPW
ErY |Z “ 0,W “ isPrpW “ i|Z “ 0q. (13)

Let yi “ mintErY |Z “ 0,W “ isu and yi “ maxtErY |Z “ 0,W “ isu for all i P W , as

such the identification region of ErY |Z “ 0s is

HtErY |Z “ 0su “

«

ÿ

iPW
yi PrpW “ i|Z “ 0q,

ÿ

iPW
yi PrpW “ i|Z “ 0q

ff

(14)

with corresponding bandwidth B1
1 “

ř

iPWpyi ´ yiqPrpW “ i|Z “ 0q. Accordingly, assump-
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tion 1 and proposition 1 can be extended as follows.

Assumption 4. Range of yi is not a singleton. y ď yi ă yi ď y for i P W.

Proposition 4. If D i P W such that at least one of the weak inequalities in assumption 4

holds with strict inequality, then B1
1 ă B0.

Proof. wlog let y ă yj ă yj “ y for some j ‰ i and y “ yi ă yi “ y @i ‰ j, hence

B1
1 “ py ´ yq ` rpyj ´ yjq ´ py ´ yqsPrpW “ j|Z “ 0q`

ÿ

i‰j

rpyi ´ yiq ´ py ´ yqsPrpW “ i|Z “ 0q

“ py ´ yq ´ pyj ´ yqPrpW “ j|Z “ 0q

ă py ´ yq “ B0

In a similar way, let y “ yj ă yj ă y for some j ‰ i and y “ yi ă yi “ y @i ‰ j, hence

B1
1 “ py ´ yq ` rpyj ´ yjq ´ py ´ yqsPrpW “ j|Z “ 0q`

ÿ

i‰j

rpyi ´ yiq ´ py ´ yqsPrpW “ i|Z “ 0q

“ py ´ yq ´ py ´ yjqPrpW “ j|Z “ 0q

ă py ´ yq “ B0

Similarly, proposition 3 can be extended to identify the bandwidths.

2.2.1 Example: Two Binary Covariates

Let X “ tX1, X2u, such that Xi P t0, 1u for i “ 1, 2. In this case, X “

tt0, 0u, t0, 1u, t1, 0u, t1, 1uu and W is defined as

10



W “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

1 if X1 “ 0 and X2 “ 0

2 if X1 “ 0 and X2 “ 1

3 if X1 “ 1 and X2 “ 0

4 if X1 “ 1 and X2 “ 1

(15)

Using these two categorical covariates and the law of total probability we can rewrite

the conditional mean as

ErY |Z “ 0s “
ÿ

iPt1,2,3,4u

ErY |Z “ 0,W “ isPrpW “ i|Z “ 0q. (16)

Again, let yi “ mintErY |Z “ 0,W “ isu and yi “ maxtErY |Z “ 0,W “ isu for all

i P t1, 2, 3, 4u, hence the identification region is

HtErY |Z “ 0su “

«

ÿ

iPt1,2,3,4u

yiPrpW “ i|Z “ 0q,
ÿ

iPt1,2,3,4u

yi PrpW “ i|Z “ 0q

ff

. (17)

The corresponding bandwidth of this region is

B1
1 “

ÿ

iPt1,2,3,4u

pyi ´ yiqPrpW “ i|Z “ 0q (18)

where we rewrite equation 18 as follows

B1
1 “ py ´ yq `

ÿ

iPt1,2,3,4u

rpyi ´ yiq ´ py ´ yqsPrpW “ i|Z “ 0q (19)

Using proposition 3, it is clear that B1
1 ă B0.
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3 Application: Undercoverage in the U.S. and Consumer

Confidence

3.1 Undercoverage in U.S.

Undercoverage occurs when population members do not appear in the sample frame, for

example, as a result of the exclusion of cellphone-only population in random digit dialing

(RDD) landline samples and more recently due to the exclusion of landline-only population

in RDD cellphone samples. The undercoverage of cellphone-only population was of little

concern in the early 2000s; however, as this population increased, the difference between

having cellphone-only or landline-only along with the corresponding characteristics of each

group became a potential source of coverage bias.

Figure 1 shows the percentage of adults broken down by landline-only, cellphone-only,

and phoneless using data from the National Center for Health Statistics, which releases

telephone coverage estimates for the U.S. from a national representative sample, that is,

the National Health Interview Survey (NHIS) (Blumberg and Luke 2006, 2010, 2014, 2018).

In 2003, the percentage of landline-only adults was 40.4%, while for cellphone-only and

phoneless adults the percentages were 2.8% and 1.6%, respectively. By 2009, the percentage

of landline-only adults dropped to 13.4% and laid below the percentage of cellphone-only

which reached 21.1%. The phoneless adults remained at 1.5% during this period. In 2012,

the percentage of landline-only adults decreased to 7.8% and to 4.1% by 2018, while the

percentage of cellphone-only adults increased from 34% to 55.2% during this period. Finally,

although the percentage of phoneless adults remained low and constant in the 2000s, it

increased slightly between 2012 and 2018 from 1.9% to 3.2%.

As a result of the changes in telephone service preferences, the undercovered population

in RDD landline sampling (phoneless and cellphone-only) increased monotonically in the last

two decades. In 2003, the undercovered population was 4.4%, increasing to 35.9% in 2012,

and reaching 58.4% by 2018. On the contrary, the undercovered population in RDD cellphone
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sampling (phoneless and landline-only) has trended downwards, starting at 42% in 2003 and

reaching 7.3% by 2018.

Figure 1: Percentage of Adults by Telephone Status

Source: National Health Interview Survey (NHIS). Shaded area denotes NBER-
defined recession

Table 1 shows that the demographic characteristics of cellphone-only and landline-only

adults’ populations in the U.S. between 2006 and 2018 tend to be different. For instance,

looking at the age distribution in 2006, 64.3% of the cellphone-only adult population was aged

18-34, 33.9% aged 35-64, and 1.8% were 65 and older, while the distribution for landline-only

was 25.4%, 48.1%, and 26.5%, respectively. This contrast in the age distributions persisted

in 2018. The distribution by race across the two populations was similar in 2006, with each

population having 50% White, around 26% Hispanic, and 16% Black. By 2018, however,

the distributions diverted, and 60% of the cellphone-only population were White and 21.5%

Hispanic, while 70% of the landline-only were White and 10.9% Hispanic. Similarly, impor-

tant differences appear in terms of education achievement. A greater share of landline-only

adults has a 4-year college degree or higher compared to cellphone-only adults across the

years in the table.
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Table 1: Demographics by Telephone Service Status

Cellphone-only Landline-only

Jan-June
2006

Jan-June
2012

Jan-June
2018

Jan-June
2006

Jan-June
2012

Jan-June
2018

Age
18-24 33.54 20.16 13.81 10.07 9.55 7.35
25-29 19.25 15.58 11.65 7.31 5.27 3.26
30-34 11.52 13.60 11.40 8.03 6.03 3.63
35-44 16.83 20.08 19.13 16.47 16.15 11.34
45-64 17.09 25.68 31.97 31.67 39.70 37.75
65+ 1.77 4.90 12.04 26.45 23.30 36.66

Race
White 50.64 46.61 59.85 48.78 59.90 70.03
Hispanic 25.54 29.48 21.45 27.94 18.15 10.86
Black 16.17 16.09 11.39 16.85 13.85 11.42
Asian 6.83 6.45 5.60 5.49 7.20 6.38
Other 0.82 1.38 1.70 0.94 0.91 1.31

Education
Some high school or less 14.46 14.80 8.55 9.19 9.44 5.70
High school graduate or GED 29.35 26.63 22.47 23.37 22.30 18.55
Some post-high school, no degree 31.48 26.66 22.18 21.90 21.43 17.46
4-year college degree or higher 24.72 31.91 46.79 45.54 46.83 58.29

Gender
Female 46.97 50.93 50.11 52.12 52.87 52.73
Male 53.03 49.07 49.89 47.88 47.13 47.27

Sample Size 30,971 40,929 30,810 30,971 40,929 30,810

Source: Own calculations based on the National Health Interview Surveys (NHIS). Our calculations use the sample
weights and closely match the official figures, with differences at the second decimal place. The sample size consists
of American adults age 18 and older.

3.2 Consumer Sentiment

Consumer confidence measures are leading indicators that are based on questions relating

to households’ expectation for changes in business conditions and their financial situation.

In particular, these measures have been associated with household spending and future

economic activity.6

In this section, we illustrate the construction of the identification region using con-

6For instance, the study by Carroll, Fuhrer and Wilcox (1994) and Bram and Ludvigson (1998) found
that after controlling for economic fundamentals, consumer confidence still has value for predicting household
spending in the U.S. Similarly, Barsky and Sims (2012) shows that consumer confidence has predictive
implication for the future paths of macroeconomic variables. More recently, Gillitzer and Prasad (2018) and
Benhabib and Spiegel (2019) assessed the causal effect of consumer confidence on economic activity using
an instrumental variables approach.
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sumer confidence. Consumer sentiment surveys are regularly conducted in at least forty-five

countries (Curtin 2007). In particular, consumer confidence measures are seen as leading

indicators that are associated with consumption expenditure and future economic activity,

thus providing an early signal about the strength of the economy (see, for instance, Blan-

chard (1993); Carroll, Fuhrer and Wilcox (1994); and more recently Benhabib and Spiegel

(2019)).

In the U.S., consumer confidence has been measured by the University of Michigan Index

of Consumer Sentiment (UMICS).7 The index is constructed using consumers’ responses to

five questions, which have remained unchanged since their inception and which are part

of a broader survey of consumer attitudes. The responses come from a monthly nationally-

representative telephone survey of 500 adults. The survey has been conducted since the 1940s

and it is available monthly since 1978. Prior to July 2012, the sample of adults was selected

using RDD landline and between July 2012 and July 2015 from a dual-frame landline-cellular

telephone design. After July 2015 the survey switched to a cellular-only design8.

In our application, the missing at random assumption is not credible because not only

the characteristics of the covered and uncovered population differ (see Table 1), but the

consumer confidence levels tend to differ as well. For example, when looking at data prior

to 2000, that is, prior to the undercoverage due to the exclusion of cellphones, consumer

confidence in the U.S. among those aged 18-34 and 35-54 were each significantly higher

than confidence among those aged 55 and older. The latter subpopulation of seniors tends

to have more landlines, while the younger subpopulations are typically undercovered with

RDD landline sampling.

Our analysis covers the period between 2003 and 2018 due to the availability of tele-

7Another national index is the Conference Board’s Consumer Confidence Index which uses a mail out
survey, hence exempt from the issues discussed here.

8Another index, the University of Florida Consumer Sentiment Index (UFCSI) also comes from a monthly
telephone survey from around 500 randomly selected adult residents of Florida. Since its inception, the survey
has used RDD landline, but switched to RDD cellphone in January 2015. The index is made up of the same
five questions as the Michigan index but it is available since 1985 and monthly since 19919 We construct the
identification region for the Florida index also. The results can be provided upon request.
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phone coverage data. This information comes from the National Health Interview Surveys

(NHIS) and is available every six months; thus we calculate a semiannual measure of con-

sumer confidence for each index by averaging the corresponding months. In Figure 2 we

plot the consumer sentiment index of the University of Michigan and its identification region

following the bounds provided in equation (2). We use the historical observed minimum of

55.3 and maximum of 112 to construct the identification region.10 Table A1 in Appendix A

contains all the information behind the figures and our analysis.

Looking at UMICS in Figure 2, our calculations show that in the early 2000s the

identification region is relatively small, as expected, since only 4.5% of the adult population

was undercovered. In the late 2000s, the region increases considerably, particularly during

the recession years, and it continues to widen until July 2012. In the second half of 2008,

when the undercovered population was 20%, UMICS reached its lowest semiannual value of

61.3 with corresponding bounds of 60 and 71.5 (a width of 11.5). The upper bound sets

consumer confidence above the levels observed six months before the recession. By 2012, the

undercovered population reached 36%, and the bounds are 68.5 and 88.9 (a width of 20.4). It

is worth noting that the published index tends to be closer to its lower bound until the switch

to cellular-only, thus potentially providing a more pessimistic outlook. After July 2012, the

width of the region collapses sharply since only the phoneless adults, 2% of the population,

were undercovered when the survey switched to dual-frame landline-cellular design. The size

of the region remains stable until the first half of 2015. In the second half of 2015, the region

increased when the survey finally switched to RDD cellphone and the uncovered population,

in this case, reached 8.6%.

Finally, Figure 3 summarizes our findings by plotting the width of the identification

region for the index. As shown before, this width also corresponds to the width of the

identification region for the coverage error. The widths increase monotonically since 2003

10In the Michigan index, the minimum corresponds to the reading observed in November 2008 and the
maximum to January 2000
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up until July 2012 and January 2015 for UMICS. The width of the index increases from 2.6

in 2003 to 20.4 in 2012, that is, almost eightfold. A dual-frame design clearly reduces the

width of the region considerably. For instance, the switch from RDD landline to a dual-

frame reduced the width of the index from 20.4 to 1.1 in 2012. As expected, this width

increases when the survey switches to RDD cellphone, however, the magnitude of the change

is noticeably small from 1.8 to 4.9 in 2015. In addition, the figure plots the width for a

hypothetical region in which the index adopts a dual-frame during the whole period. This

width remains low and constant over time, as expected. Notably the difference between

using a dual-frame and RDD cellphone are small in the later years. For instance, in the

second-half of 2015, the difference was 3.4, and by the end of 2018, this gap reduces to 2.3.

Figure 2: University of Michigan Index of Consumer
Sentiment and Identification Region

Note: Shaded area denotes NBER-defined recession and vertical lines mark changes in RDD
sampling design. The bounds are constructed using Table 1 and equation (2).
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Figure 3: Widths of the Identification Region

Note: Shaded area denotes NBER-defined recession and vertical lines mark changes in RDD
sampling design. The widths of the identification region are constructed using Table 2 and
equation (2)).

Table 2 shows the descriptive statistics of ICS by age, gender, and education, and by

period before and after the year 2000. The observed bound of the index can be restricted

to the interval r54.3, 117, 3s. The lower bound is observed among respondents 55 years and

older and the upper bound among those with a college degree or more.
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Table 2: Index of Consumer Sentiment (ICS) Descriptive Statistics

Period: 1978-2000 Period: 2001-2018 Period: 1978-2018
Min Max Median Mean Min Max Median Mean Min Max Median Mean

ICS 58.92 109.45 91.43 87.70 61.25 98.63 86.37 84.00 58.92 109.45 90.39 86.08

Age groups
18-34 66.60 116.28 100.31 96.16 69.22 108.72 97.25 94.49 66.60 116.28 99.18 95.43
35-54 55.13 111.35 92.20 87.65 61.75 101.72 87.98 85.84 55.13 111.35 91.52 86.86
55+ 54.28 101.58 80.61 79.36 57.32 96.27 78.13 77.66 54.28 101.58 80.08 78.61

Gender
Male 65.30 112.22 97.35 93.30 63.98 105.93 91.90 88.90 63.98 112.22 95.54 91.37
Female 54.52 107.22 86.80 83.40 57.00 91.48 81.57 79.45 54.52 107.22 85.07 81.67

Education level
High school or less 56.03 101.43 85.38 82.43 58.73 99.87 80.47 78.21 56.03 101.43 82.35 80.57
Some college 63.08 110.37 94.17 90.95 59.53 101.55 86.78 83.43 59.53 110.37 89.03 87.65
College degree or more 62.78 117.30 99.02 94.84 62.95 101.85 92.30 88.86 62.78 117.30 96.09 92.22

Note: The table shows the descriptive statistics of University of Michigan Index of Consumer Sentiment (ICS) by age, gender, and
education using half-year data for the period 1978 - 2018.

Prior to July 2012, the sample of adults was selected using RDD landline and between

July 2012 and July 2015 the design changed to a dual-frame landline-cellular. After July

2015 the survey switched to a cellular-only design. As a result of the changes in the design,

different members of the population have been excluded from the sampling frame at different

moments, giving rise to varying degrees of coverage bias over time.

Figure 4 plots consumer sentiment between 1978 and 2018 and the evolution of its cov-

erage bias since 2013 using a half-year frequency. The vertical lines in the figure correspond

to the changes in the sampling design. The undercovered population is calculated using the

National Health Interview Surveys (NHIS), which provides telephone coverage estimates for

the U.S. every six months between 2003 and 2018. For this reason, we calculate a half-

year measure of consumer confidence by averaging the corresponding months. Table A1 in

Appendix A contains the percentage for each population, the percentage of undercovered

population (coverage bias), as well as the half-year ICS. Prior to 2012, the phoneless and

only-wireless populations were excluded from the sampling frame. However, as a result of the

rapid substitution of landline with cellphones in the 2000s, the percentage of undercovered

population increased monotonically from 5% to 36% between 2003 and 2012. Between 2012
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and 2015, only the phoneless population was excluded from the sampling frame. Conse-

quently, during this period of time, the undercovered population declined sharply, remaining

around 2.5% on average. Finally, in the second-half of 2015, both the phoneless and only-

landline populations were excluded, and thus the undercovered population reached 9% and

has slowly declined since, setting at 7% by 2018.

Figure 4: Consumer Sentiment and Coverage Bias

Note: The figure plots the University of Michigan Index of Consumer Sentiment
(ICS) between 1978 and 2018 and the percent of undercovered population
between 2003 and 2018 using half-year data. The undercovered population
corresponds to the members of the population excluded from the sample frame.
The shaded areas denotes NBER-defined recessions and the vertical lines denote
changes in the sampling design.

3.3 ICS Identification Region

Figure 5 plots consumer sentiment and its identification region described by equation (2)

using two different bounds for the index. The wider region considers the bound r2, 150s,

while the tighter one uses r54.3, 117.3s. The former bound is based on the potential values

that the index can take in theory and the latter corresponds to the observed range of the
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index between 1978 and 2000.11 The identification region spanned by the empirical bound

is 42.6% of the region spanned by the theoretical bound, and it is strictly contained in

it.12 Regardless of the bound considered, our calculations show that in the early 2000s the

identification region of the index was relatively small, as expected, since only 4.5% of the

adult population was undercovered. In the late 2000s, the region increased considerably,

particularly during the recession years, and it continued to widen until July 2012. In the

second half of 2008, the ICS reached 61.3 points, its lowest value in our time frame, and

the undercovered population reached 20%. As a results of this undercoverage, the index

could have taken any value in the interval r49.3, 79.2s, if the bound r2, 150s is employed,

or any value in the interval r59.8, 72.6s, if the bound r54.3, 117.3s is considered. By the

first-half of 2012, consumer sentiment reached 75.9 points and the percent of undercovered

population peaked at 36%. However, the index could have taken any value in the intervals

r49.4, 102.5s or r68.2, 90.8s depending on the bound considered. It is worth noticing that the

published index tends to be closer to its lower bound. After July 2012, the width of both

identification regions collapse sharply since only the phoneless adults, 2% of the population,

were excluded. The size of the regions remained small and stable until the first half of 2015.

In the second half of 2015, when the survey made a final switch to the RDD cellphone design,

the identification region widened as a results of the increase in the undercovered population,

which set at around 8.6%.

11We consider the period 1978-2000 to avoid any coverage bias from the substitution of landlines with
cellphones. Nonetheless, the interval remains the same when considering the whole period, 1978-2018.

12At every point in time, the bandwidths are Br2,150s “ p150 ´ 2qPrpZ “ 0q and Br54.3,117.3s “ p117.3 ´

54.3qPrpZ “ 0q. Hence Br54.3,117.3s{Br2,150s “ p117.3 ´ 54.3q{p150 ´ 2q “ 0.426.
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Figure 5: Identification Region of Consumer Sentiment

Note: The figure plots the identification region (IR) of the University of Michi-
gan Index of Consumer Sentiment (ICS). The regions are constructed using
equation (2) and the bounds r2, 150s and r54.3, 117.3s. The shaded area denotes
NBER-defined recession and the vertical lines denote changes in the sampling
design.

Figure 6 plots the bandwidths of the two identification regions and provides a visual

summary of the behavior of each region over time. The magnitude of the bandwidths in-

creases monotonically since 2003 up until July 2012. The bandwidth of the region using the

bound r2, 150s increases from 7 to 53 points, while the one using the bound r54.3, 117, 3s

increases at a slower pace, from 3 to 20 points. As expected, the bandwidths became smaller

between 2012 and 2015, and increased again after the second-half of 2015.
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Figure 6: Bandwidth of the Identification Region

Note: The figure plots the bandwidth (BW) of the identification region of the
ICS using the bounds r2, 150s and r54.3, 117.3s. The bandwidths are constructed
using equation (2). The vertical lines denote changes in the sampling design.

3.4 ICS Identification Region with Covariates

Consumer confidence is split by demographics such as age, gender, or education. For in-

stance, across all data points in our time-series, consumer confidence differs by gender, with

women reporting less confidence. The descriptive statistics in Table 1 shows that consumer

confidence for women is 83.4 points on average between 1978 and 2000, while for men is

93.3 points.13 Furthermore, the bound for women is contained in the bound of the whole

index, that is, r54.5, 107.2s Ă r54.3, 117.3s Ă r2, 150s. Similarly, the bound for men is

r65.3, 112.2s Ă r54.3, 117.3s Ă r2, 150s. Figure 9 in Appendix A provides a visual inspec-

tion of the evolution of consumer confidence by gender. Notably, a similar pattern occurs

when considering consumer confidence by age or education, with respondents age 55 and

13We consider the period 1978-2000 to avoid any potential coverage bias.
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older or with high school or less reporting less confidence (Figure 10 and 11 in Appendix A,

respectively).

Following proposition 1, it is possible to tighten the identification region of the index

using a covariate. Using equation (5), we recalculate the identification region considering

gender as covariate. We consider the bounds py0, y0q “ p54.5, 107.2q for women and py1, y1q “

p65.3, 112.2q for men. We calculate the PrpW “ 0 | Z “ 0q and PrpW “ 1 | Z “ 0q using the

NHIS.

Figure 7 plots the identification region using the observed bound r54.3, 117.3s and the

improved region using the covariate gender. As anticipated, the latter region is contained

in the former one. For example, in the first-half of 2012, when the undercovered population

peaked at 36%, the index could have taken any value in the interval r68.1, 90.8s, if the bound

r54.3, 117.3s is considered, but the region improves to r70.1, 88s with the covariate gender.

In other words, the region shrinks by 21.1%. Figures 12, 13, and 14 in Appendix B show

the identification region using age, education, and the interacion of education and gender,

respectively. We provide a summary of the results in Table 2 and a visual inspection in

Figure 4.
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Figure 7: Bounds using gender as covariate

Note: The figure plots the identification region (IR) of the University of Michigan Index
of Consumer Sentiment (ICS). The regions are constructed using (2) and the interval
r54.3, 117.3s, and (6) and gender as covariate. The shaded area denotes NBER-defined
recession and the vertical lines denote changes in the design.

Table 3 summarizes the bandwidth improvements of the identification region using

different covariates. In addition, we present the improvements across the different sampling

designs that occurred over time. The average bandwidth using the theoretical bound r2, 150s

during the RDD landline period was 26.8. This average bandwidth declines to 3.7 when the

survey switched to a dual-frame and it increases to 12.1 in the RDD cellphone period after

the second-half of 2015. A similar pattern is observed for the average bandwidth of the

identification region spanned by the observed bound r54.3, 117.3s. When using the covariate

gender to improve the region, the average bandwidth during the RDD landline period is 9,

and drops to 1.2 and 4.1 in the dual-frame and RDD cellphone periods, respectively. As

a result, the overall identification region of the index decreases by 66.4% with respect to

the region spanned by the bound r2, 150s and by 21.2% with respect to the region using

the observed bound r54.3, 117.3s.14 Finally, it is worth noting that the covariate education

14We calculate the percentage change for each time point within the corresponding period and then we
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produces the greatest improvement, reducing the identification region by 67.8% or by 24.4%

depending on the baseline region considered. Furthermore, when the interaction of gender

and education is considered, the identification region of the index declines up to 71.2% or

up to 32.3%. Finally, Figure 8 provides a visual inspection of the improvements in the

bandwidths. The bandwidth improvements are computed as the absolute difference between

the improved bounds using the covariates and the bounds constructed using the minimum

value of the index 54.3 and maximum of of the index 117.3.

compute the average by period.
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Figure 8: Bound improvements

Note: Key to symbols: ICS = University of Michigan Index of Consumer Sentiment,
IMg = Bound improvement using gender as covariate, IMa = Bound improvement using
age as covariate, IMge = Bound improvement using gender and education as covariate.
All bound improvements are relative to the IRr54.3, 117.3s

4 Bounds on Conditional Mean Function

We now consider the conditional mean function. Let the vector pY,X,Z,W q characterize

some of member of the population of interest, where Y is the outcome of interest, X is vector

of covariates, and Z is a binary variable taking unity if the outcome Y can be observed by

the researcher and zero otherwise. Using the law of iterated expectations (LIE), we can

decompose the conditional mean as follows:

ErY |Xs “ ErY |X,Z “ 0sPrpZ “ 0|Xq ` ErY |X,Z “ 1sPrpZ “ 1|Xq (20)

where the latent conditional mean ErY |X,Z “ 0s is unobserved by the researcher and cannot

be point identified, while the other components of equation (20) can be point identified using

the sampling process. We assume that Y conditional on X is bounded within the interval
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ryx, yxs, where the bounds of the latter are known. Using this fact the identification region

of the conditional mean is as follows:

HtErY |Xsu “ ryx PrpZ “ 0|Xq ` ErY |X,Z “ 1sPrpZ “ 1|Xq,

yx PrpZ “ 0|Xq ` ErY |X,Z “ 1sPrpZ “ 1|Xqs,

(21)

and the bandwidth of the identification region is Bx
1 “ Bx

0 PrpZ “ 0|Xq with Bx
0 “ pyx ´ yxq.

The tightness of the identification region is a function of Bx
0 and PrpZ “ 0|Xq, but we can

further refine the bounds on ErY |Xs if we can tighten Bx
0 .

To illustrate the idea consider a discrete random variable, W , with support W and

realized values i, then by the LIE we can decompose the latent conditional mean ErY |X,Z “

0s in (20) as follows:

ErY |X,Z “ 0s “
ÿ

i

ErY |X,Z “ 0,W “ isPrpW “ i|X,Z “ 0q. (22)

Suppose that Y conditional of X, Z “ 0, and W “ i is bounded between yxi and yxi, where

´8 ă yxi ď yxi ă 8, then, the identification region of ErY |X,Z “ 0s is as follows:

HtErY |X,Z “ 0su “

„

ÿ

i

yxiP pW “ i|Z “ 0, Xq,
ÿ

i

yxiP pW “ i|Z “ 0, Xq

ȷ

(23)

where the bandwidth of the identification region is

Bxi
0 “

ÿ

w

pyxi ´ yxiqP pW “ i|Z “ 0, Xq (24)

Proposition 5. Suppose that the range of yxi is not a singleton and yx ď yxi ă yxi ď

yx for i, then if there exists W “ i such that at least one of the weak inequalities holds with

strict inequality, then Bxi
0 ă Bx

0 .
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Proof. wlog let yx ď yxj ă yxj “ yx for j ‰ i and yx “ yxi ă yxi ď yx for all i ‰ j, hence

Bxi
0 “ pyx ´ yxq ` rpyxj ´ yxjq ´ pyx ´ yxqsPrpW “ j|Z “ 0, Xq`

ÿ

i‰j

rpyxi ´ yxiq ´ pyx ´ yxqsPrpW “ i|Z “ 0, Xq

“ pyx ´ yxq ´ pyxj ´ yxqPrpW “ j|Z “ 0, Xq

ă pyx ´ yxq “ Bx
0

In a similar fashion, let yx “ yxj ă yxj ă yx for some j ‰ i and yx “ yxi ă yxi “ y @i ‰ j,

hence

Bxi
0 “ pyx ´ yxq ` rpyxj ´ yxjq ´ pyx ´ yxqsPrpW “ j|Z “ 0, Xq`

ÿ

i‰j

rpyxi ´ yxiq ´ pyx ´ yxqsPrpW “ i|Z “ 0, Xq

“ pyx ´ yxq ´ pyx ´ yxjqPrpW “ j|Z “ 0, Xq

ă pyx ´ yxq “ Bx
0

4.1 Bounds Using Level-set Restrictions

Manski (1990) explored the identifying power of level set restrictions and in this section

we extend his work in refining the bounds on the conditional mean function. Our condi-

tional moment of interest is the conditional mean function, ErY |Xs, and by the LIE we can

decompose it as follows:

ErY |Xs “ ErY |X,Z “ 0sPrpZ “ 0q ` ErY |X,Z “ 1sPrpZ “ 1q (25)

Suppose that the outcome Y conditional of X is bounded within some known interval ryx, yxs,

where ´8 ă yx ď yx ă 8 and let µpXq ” ErY |Xs.
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ErY |Xs P MpXq ”
“

yxPrpZ “ 0|Xq ` ErY |X,Z “ 1sPrpZ “ 1|Xq,

yxPrpZ “ 0|Xq ` ErY |X,Z “ 1sPrpZ “ 1|Xq
‰

(26)

Now suppose that ErY |Xs is constant on some set X0 Ă X , then the collection of bounds

MpXq with X P X0, has a non-empty intersection which contains the common value of

ErY |Xs. That is, for each κ P X0 we have:

µpκq P Mpκq ”
č

xPX0

MpX “ xq

”

«

sup
xPX0

"

yxPrpZ “ 0|X “ xq ` ErY |X “ x, Z “ 1sPrpZ “ 1|X “ xq

*

,

inf
xPX0

"

yxPrpZ “ 0|X “ xq ` ErY |X “ x, Z “ 1sPrpZ “ 1|X “ xq

*

ff

(27)

In order to refine the bounds on equation (27), let W be a discrete random variable, then

by the LIE we can decompose E
“

Y |X,Z “ 0s as follows:

E
“

Y |X,Z “ 0s “
ÿ

w

ErY
ˇ

ˇX,Z “ 0,W “ wsPrpW “ w|X,Z “ 0q (28)

The following assumption says that the conditional mean function, E
“

Y
ˇ

ˇX,Z “ 0,W
‰

, in

equation (28), has a bounded support.

Assumption 5. Conditional on X, Z “ 0, and W “ w, Y is bounded between yx0w and

yx0w, for each w, where ´8 ă yx0w ď yx0w ă 8.

Then, it follows directly from Assumption 5 that yx0w ď ErY
ˇ

ˇX,Z “ 0,W “ ws ď yx0w for

every w and suppose that the conditional mean function, ErY
ˇ

ˇX,Z “ 0s, is constant over

some space Xx0 P X. Then, for any κ P Xx0 we have:
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µpκq P Mpκq ”
č

xPXx0

MpX “ x, Z “ 0q

”

«

sup
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

*

,

inf
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

*

ff

(29)

and the width of identification region is

inf
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

*

´

sup
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

* (30)

Using the lower and upper bounds obtained in equation (29) and plugging them to (27),

then the refined identification region on ErY |Xs is as follows:

µpκq P Mpκq ”
č

xPX0

MpX “ xq

”

«

sup
xPX0

"

sup
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

*

PrpZ “ 0|X “ xq`

ErY |X “ x, Z “ 1sPrpZ “ 1|X “ xq

*

,

inf
xPX0

"

inf
xPXx0

"

ÿ

w

yx0wPrpW “ w|X “ x, Z “ 0q

*

PrpZ “ 0|X “ xq`

ErY |X “ x, Z “ 1sPrpZ “ 1|X “ xq

*

ff

(31)

Bounds using level-set restrictions can be expanded to the treatment effects literature and

we intend to address it in a later version of this paper where we will consider cases with and

without imposing shape restrictions.
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5 Concluding Remarks

Missing outcomes is a pervasive problem that arises in many situations hindering our ca-

pacity to recover population moments. For instance, missing outcomes appear as a result of

survey nonresponse, attrition in longitudinal studies, or when population members do not

appear in the sample frame. The latter problem is known as coverage bias and it arises

from the exclusion of cellphone-only population in standard landline telephone surveys, for

example. The literature has focused on the identifying power of shape restrictions assump-

tions which can be invoked in empirical studies. This paper propose a novel way to improve

the identification regions by using adding covariates. Using the different sampling designs

employed by the University of Michigan Index of Consumer Sentiment over time, we show

that the identification region varies with the coverage bias.

In particular, our results show that the width of the identification region increased sub-

stantially between 2003 and 2012, when the undercovered population peaked. Nonetheless,

by exploiting the additional restrictions imposed by the covariates, this region can be re-

duced up to 32.3% relative to the region spanned by the empirical bound r54.3, 117.3s and

up to 71.2% relative to the theoretical bound r2, 150s. Hence, by exploiting variation in the

covariates we are able to tighten the bounds without imposing any shape restrictions. In

Appendix C we extend our approach to the treatment effects literature and show that under

some very mild conditions the bounds can be tightened. We intend to expand our approach

to the treatment effects literature using level-set restrictions. Our partial identification ap-

proach which exploits variation across strata of the sample can improve the bounds and

provides the researcher with information on the magnitude of undercoverage bias.
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Figure 9: Consumer Sentiment by Gender

Source: University of Michigan Survey Research Center. Shaded areas denote
NBER-defined recessions. The graph displays the breakdown of consumer
sentiment by gender from 2003 to 2020. The consumer sentiment for males is
higher than for females.
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Figure 10: Consumer Sentiment by Age

Source: University of Michigan Survey Research Center. Shaded areas denotes
NBER-defined recessions. The graph displays the breakdown of consumer
sentiment by age groups from 2003 to 2020. As shown the age group 18-34 has a
higher sentiment when compared with the other two age groups.
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Figure 11: Consumer Sentiment by Education Levels

Source: University of Michigan Survey Research Center. Shaded areas denotes
NBER-defined recessions. The graph displays the breakdown of consumer
sentiment by education levels from 2003 to 2020. As shown consumers with
college degree or higher have a higher sentiment when compared to consumers
with some college degree or high school.
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B Bound Improvement Using Different Covariates

Figure 12: Bounds using age as covariate

Note: Key to symbols: ICS = University of Michigan Index of Consumer Sentiment,
and IR = Identification region conditioning on age. The shaded area denotes NBER-
defined recession and the dashed vertical lines mark changes in the RDD sampling
design.
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Figure 13: Bounds using education as covariate

Note: Key to symbols: ICS = University of Michigan Index of Consumer Sentiment,
and IR = Identification region conditioning on education. The shaded area denotes
NBER-defined recession and the dashed vertical lines mark changes in the RDD sam-
pling design.

Figure 14: Bounds using gender and education covariates

Note: Key to symbols: ICS = University of Michigan Index of Consumer Sentiment,
and IR = Identification region conditioning on gender and education. The shaded area
denotes NBER-defined recession and the dashed vertical lines mark changes in the
RDD sampling design.
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C Bounds on treatment effects

C.1 Treatment Effect Framework

An economic agent can be either be in the treated state or the untreated state, however

he can not occupy both states at the same time. Let Y1 be the potential outcome when

the agent is in the treated state and Y0 the potential outcome in the untreated state. The

agent’s gain or net utility from participating in the program is ∆ “ Y1 ´ Y0 and the average

treatment effect (ATE) is given by

Er∆s “ ErY1 ´ Y0s

where Er∆s exists and is finite a.e since Y1 and Y0 have finite first moments.

C.1.1 Nonparametric Bounds on ATE

Manski (1990) derived non-parametric bounds on the average treatment effect without im-

posing any assumptions or shape restrictions.

Assumption 6. Suppose that the supports Y1 and Y0 of the potential outcomes Y1 and

Y0, respectively, are bounded. That is, y1 “ minpY1q, y1 “ maxpY1q and y0 “ minpY0q,

y0 “ maxpY0q.

Then, by the LIE we can compose both components of the average treatment effect as follows:

ErY1s “ ErY1|Z “ 1sPrpZ “ 1q ` ErY1|Z “ 0sPrpZ “ 0q (32)

ErY0s “ ErY0|Z “ 1sPrpZ “ 1q ` ErY0|Z “ 0sPrpZ “ 0q (33)

where ErYi|Z “ 1s for all i “ 0, 1 exists and is finite a.e. FZ“1. Under Assumption 6 the

lower and upper bounds on Y1 and Y0 are as follows:
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LBpErY1sq “ ErY1|Z “ 1sPrpZ “ 1q ` y1 PrpZ “ 0q (34)

UBpErY1sq “ ErY1|Z “ 1sPrpZ “ 1q ` y1 PrpZ “ 0q (35)

LBpErY0sq “ y0 PrpZ “ 1q ` ErY0|Z “ 0sPrpZ “ 0q (36)

UBpErY0sq “ y0 PrpZ “ 1q ` ErY0|Z “ 0sPrpZ “ 0q (37)

Then the bounds on Er∆s is as follows:

HrEr∆ss “

„

ErY1|Z “ 1sPrpZ “ 1q ` y1 PrpZ “ 0q ´ y0 PrpZ “ 1q ´ ErY0|Z “ 0sPrpZ “ 0q,

ErY1|Z “ 1sPrpZ “ 1q ` y1 PrpZ “ 0q ´ y0 PrpZ “ 1q ´ ErY0|Z “ 0sPrpZ “ 0q

ȷ

(38)

and the width of ATE is:

widthpEr∆sq “ py1 ´ y1qPrpZ “ 0q ` py0 ´ y0qPrpZ “ 1q (39)

C.1.2 Improvement Using Covariates

We can further improve the bounds if we reduce the differences py1 ´ y1q and py0 ´ y0q. We

decompose ErY0|Z “ 1s and ErY1|Z “ 0s as follows

ErYi|Z “ 0s “ E
”

E
“

Yi|Z “ 0,W
‰ˇ

ˇZ “ 0
ı

for i “ 0, 1. (40)
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Assumption 7. Conditional on Z “ 0 and W , Y0 and Y1 respectively have bounded supports

for each W “ w. Let Y1w and Y0w denote each support respectively then y1w “ minpY1wq,

y1w “ maxpY1wq and y0w “ minpY0wq, y0w “ maxpY0wq.

Under Assumption 7 the bounds on ErY0|Z “ 1s and ErY1|Z “ 0s are as follows:

H
“

ErY0|Z “ 1s
‰

“

„

ÿ

w

y0w PrpW “ w|Z “ 1q,
ÿ

w

y0w PrpW “ w|Z “ 1q

ȷ

(41)

H
“

ErY1|Z “ 0s
‰

“

„

ÿ

w

y1w PrpW “ w|Z “ 0q,
ÿ

w

y1w PrpW “ w|Z “ 0q

ȷ

(42)

Then the new bounds on ErY0s and ErY1s:

LBpErY1sq “ ErY1|Z “ 1sPrpZ “ 1q `
ÿ

w

y1w PrpW “ w,Z “ 0q (43)

UBpErY1sq “ ErY1|Z “ 1sPrpZ “ 1q `
ÿ

w

y1w PrpW “ w,Z “ 0q (44)

LBpErY0sq “
ÿ

w

y0w PrpW “ w,Z “ 1q ` ErY0|Z “ 0sPrpZ “ 0q (45)

UBpErY0sq “
ÿ

w

y0w PrpW “ w,Z “ 1q ` ErY0|Z “ 0sPrpZ “ 0q (46)

The new identification region of Er∆s is:

Hr∆s “

„

ErY1|Z “ 1sPrpZ “ 1q ´ ErY0|Z “ 0sPrpZ “ 0q`

ÿ

w

“

y1w PrpW “ w,Z “ 0q ´ y0w PrpW “ w,Z “ 1q
‰

,

ErY1|Z “ 1sPrpZ “ 1q ´ ErY0|Z “ 0sPrpZ “ 0q`

ÿ

w

“

y1w PrpW “ w,Z “ 0q ´ y0w PrpW “ w,Z “ 1q
‰

ȷ

(47)
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The width of the new identification region is:

widthpEr∆sq “
ÿ

w

“

py1w ´ y1wqPrpW “ w,Z “ 0q ` py0w ´ y0wqPrpW “ w,Z “ 1q
‰

(48)

Assumption 8. yi ď yiw ă yiw ď yi for i P t0, 1u and for all w.

Proposition 6. If at least one of the inequalities in Assumption 8 holds than the width of

the new bounds is tighter.

C.1.3 Heterogeneous Treatment Effects

Let the assignment to treatment D be a binary variable and let the potential outcomes Y1

and Y0 be continuous outcomes. Let F1p¨q and F0p¨q be the marginal distributions of Y1 and

Y0.

Theorem C.1. Sklar Theorem (1959): Let F be the distribution function with univariate

marginal distribution functions F0 and F1, then there exists a copula Cpa, bq : pa, bq P r0, 1s ˆ

r0, 1s such that

F py0, y1q “ CpF1py0q, F0py1qq

for all y0, y1.

When the marginal distribution functions F0 and F1 are continuous then C is the unique

copula of F and it characterizes its dependence structure, otherwise C is only uniquely

determined only on ranpF0q ˆ ranpF1q, where ranpFiq denotes the range of the cumulative

distribution function Fi.

For pu, vq P r0, 1s ˆ r0, 1s then the Fréchet-Hoeffding lower and upper bounds for the

copula are:

maxpu ` v ´ 1, 0q ď Cpu, vq ď minpu, vq
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Hence for any py0, y1q we have

maxpF0py0q ` F1py1q ´ 1, 0q ď F py0, y1q ď minpF0py0q, F1py1qq

The lower and upper bounds are the Fréchet-Hoeffding lower and upper bounds for the

bivariate distributions with fixed marginal distribution functions F0 and F1. Heckman,

Ichimura and Todd (1997) and Manski (1997a) applied this result in the treatment effects

literature.

C.1.4 Bounds on the Distribution of Treatment Effects with Covariates

We know consider bounds on the distribution of treatment effects by exploiting variation

in the covariates. We build our work on Fan and Park (2010) who provided bounds on the

distribution of treatment effects. However, different from Fan and Park (2010) we do not

impose their assumption C1 that requires that the potential outcomes pY0, Y1q to be jointly

independent of the treatment assignment D conditional on covariates X. Then

F1py|xq “ PrpY1 ď y|X “ xq

“ PrpY1 ď y|X “ x, Z “ 1qPrpZ “ 1|X “ xq ` PrpY1 ď y|X “ x, Z “ 0qPrpZ “ 0|X “ xq

(49)

where PrpY1 ď y|X “ x, Z “ 0q is unobserved, but we can rewrite as follows

PrpY1 ď y|X “ x, Z “ 0q “
PrpY1 ď y,X “ x, Z “ 0q

PrpX “ x, Z “ 0q

“
PrpY1 ď y,X “ xq ´ PrpY1 ď y,X “ x, Z “ 1q

PrpX “ x, Z “ 0q

“

„

1

1 ´ ppxq

ȷ„

F1py|xq ´ ppxqFY py|X “ x, Z “ 1q

ȷ

(50)
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and in a similar fashion we have

PrpY0 ď y|X “ x, Z “ 1q “
PrpY0 ď y,X “ x, Z “ 1q

PrpX “ x, Z “ 1q

“
PrpY0 ď y,X “ xq ´ PrpY0 ď y,X “ x, Z “ 0q

PrpX “ x, Z “ 1q

“

„

1

1 ´ ppxq

ȷ„

F1py|xq ´ p1 ´ ppxqqFY py|X “ x, Z “ 0q

ȷ

(51)

where ppxq “ PrpZ “ 1|X “ xq and Y “ ZY1 ` p1 ´ ZqY0. Combining equations 50, 51,

and Theorem C.1 one can obtain the upper and lower bounds on distribution of the average

treatment effects.
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